Aihearkisto: Aurinkoenergia

Politiikkasuositus: Taloyhtiön asukkaiden aurinkosähkön tuotantoa tulisi edistää lainsäädäntömuutoksella

Taloyhtiön asukkaat ovat aurinkosähkön tuotannossa väliinputoajia. He eivät voi nykyisin tuottaa aurinkosähköä omaan käyttöönsä samaan tapaan kuin omakotitalojen asukkaat. Lainsäädäntö edellyttää nykyisin taloyhtiöissä laajaa sähkömittariremonttia, jotta aurinkosähköä voisi hyödyntää taloudellisesti järkevällä tavalla. Lakimuutoksella voitaisiin mahdollistaa taloyhtiön asukkaiden pientuotanto jo käytössä olevilla  älykkäillä sähkömittareilla. Näin voidaan luoda yhdenvertaiset edellytykset taloyhtiöiden ja omakotitalojen asukkaille. Aurinkosähkön jakelu voidaan toteuttaa tasejaksoittain taloyhtiön kiinteistöverkossa palveluna tietokoneohjelmistolla. Tätä toimintamallia parhaillaan kokeillaan taloyhtiöissä Helsingissä ja Oulussa.

Taloyhtiöissä on merkittävä aurinkosähköpotentiaali

Asunto-osakeyhtiöitä on Suomessa lähes 90 000 (1). Asuinkerros- ja rivitaloissa asuu yli 2,6 miljoonaa suomalaista ja rakennuksia on Suomessa lähes 142 000 (2). Jos näistä rakennuksista kolmasosassa olisi keskimäärin 10 kW:n aurinkovoimala, tämän aurinkosähkökapasiteetin määrä olisi yhteensä 473 MW. Aurinkosähköllä voidaan kattaa noin 10% rakennusten kuluttamasta sähköstä vuositasolla. Suomessa aurinkosähkökapasiteetin määrä oli noin 70 MW vuonna 2017 (3). Vertailun vuoksi Ruotsissa aurinkosähköä on yli 230 MW (4) ja Tanskassa yli 900 MW (5).

Aalto-yliopiston kuluttajakyselyn mukaan aurinkosähkön hankinta kiinnostaa asunto-osakeyhtiöiden osakkeenomistajia. Kyselyn 459 vastaajasta yli neljännes vastasi hankkivansa aurinkosähköä erittäin todennäköisesti, jos voimalaosuus maksaa 900 euroa ja sen avulla saa vuosittain 40 euroa säästöä. Aurinkosähkön hankinnan yleisimmiksi hyödyiksi koettiin uusiutuvan energian hyödyntäminen, päästöttömyys ja omavaraisuus. Kyselyn tulokset osoittavat, että taloyhtiön asukkaat ovat hyvin kiinnostuneita aurinkosähköstä, mutta sen hankinnan pitäisi olla vaivatonta ja taloudellista, jotta taloyhtiön päätöksenteossa enemmistön voi saada investoinnin kannalle (6).

Kaavio 1. Aurinkosähkökyselyyn vastanneista lähes puolet oli erittäin kiinnostunut hankkimaan aurinkosähköä.

Taloyhtiöiden osakkaat ovat nyt aurinkosähkön hyödyntämisessä väliinputoajia Suomessa

Taloyhtiön osakkaat eivät voi nykyisin hyödyntää aurinkosähköä teknisesti järkevällä, vaivattomalla ja taloudellisesti kannattavalla tavalla muutoin kuin kiinteistösähkön osalta. Aurinkosähkö on kannattavaa yrityksille, kunnille, maatiloille ja omakotitaloille sillä ehdolla, että ne voivat säästää omaan käyttöön tuotetulla aurinkosähköllä ostosähkön hankintakuluja energian, sähköverojen ja energiaperusteisten (snt/kWh) siirtomaksujen osalta. Tämä toteutuu, kun aurinkosähkövoimala kytketään fyysisesti sähkömittariin kuluttajan puolelle, eikä sähkömittarin “sähkökaupan” puolelle. Näin kytkettynä aurinkosähkö vähentää rakennukseen jakeluverkosta virtaavaa, sähkömittarin läpi kulkevaa ostosähköä. Aurinkosähkö kulkee sähkömittarin läpi jakeluverkkoon ja sähkömarkkinoille vain, jos rakennuksessa ei pystytä sitä itse käyttämään.

Taloyhtiöissä sähkön mittausjärjestelyt estävät nyt vastaavan oman käytön mallin, mikäli taloyhtiö ei toimi sähkömarkkinalain (7) mukaisena kiinteistön sisäisenä sähköverkkona. Taloyhtiöillä on oma kiinteistöverkko, mutta tämän oman verkon sisällä jokaisella asunnolla on jakeluverkkoyhtiön sähkömittarit. Taloyhtiön kiinteistöverkko liittyy tontin rajalla jakeluverkkoyhtiön sähköverkkoon.

Kuva 1. Taloyhtiön kiinteistöverkko ja sähkömittarit.

Ongelmana on, että jos aurinkosähkövoimala kytketään taloyhtiön kiinteistösähkömittariin, niin kiinteistöverkossa asukkaille kulkevaa aurinkosähköä kohdellaan nykyisen lainsäädännön mukaisesti sähköverojen ja siirtomaksujen osalta samoin kuin aurinkosähkö kulkisi jakeluverkkoyhtiön sähköverkon kautta sähkömarkkinoille myytäväksi (8). Menettely on tämä, vaikka fysiikan lakien mukaan aurinkosähkö kulkeutuu aina ensimmäisenä asukkaiden kulutukseen taloyhtiön kiinteistöverkon sisällä käymättä jakeluverkkoyhtiön sähköverkossa. Tämä menettely heikentää nykyisellä siirtohinnoittelurakenteella ja verotusmallilla aurinkosähkön kannattavuutta asunto-osakeyhtiöiden osakkaille verrattuna muihin aurinkosähkön tuottajiin: omakotiasujiin, maatiloihin, yrityksiin ja julkisiin toimijoihin.

Lisäksi taloyhtiöiden asukkaat eivät saa muitakaan etuuksia, kun esimerkiksi omakotitalojen asukkaat voivat saada aurinkoenergiainvestointiin kotitalousvähennystä sekä yritykset, kunnat ja maatilat investointitukea.

Taloyhtiön osakkaiden virtuaalimittarointi- eli hyvityslaskentamalli mahdollistaa aurinkosähkön hyödyntämisen

FinSolar -hankkeessa on tutkittu erilaisia aurinkosähkön hyödyntämismalleja (9) taloyhtiöissä vuodesta 2014 alkaen. Selvitysten pohjalta on todettu, että järkevin tapa mahdollistaa pientuotanto asunto-osakeyhtiön asukkaille on aurinkosähkön virtuaalimittarointi- eli hyvityslaskentamalli, koska se on osakkaille vaivattomin ja joustavin ratkaisu.

Hyvityslaskentamallin etuja ovat:

  1. Voidaan hankkia isompi yhteinen aurinkosähkövoimala, joka on suhteessa huomattavasti edullisempi kuin pienempi, pelkän taloyhtiön kiinteistösähköön hankittava voimala (10).
  2. Aurinkosähköinvestoinnin kustannukset ja tuotot jaetaan osakkaille samassa suhteessa kuin taloyhtiön kaikki muut kulut ja tuotot, osakkeiden lukumäärän ja vastikkeen jaon perusteella. Tämä on taloyhtiön osakkaille tärkeä oikeudenmukaisuusperiaate. Näin hyvityslaskentamall ei edellytä muutoksia asunto-osakeyhtiön yhtiöjärjestykseen.
  3. Taloyhtiön omaan kiinteistöverkkoon ei tarvitse tehdä mittari- ja johtoremonttia, koska hyvityslaskentaohjelmisto toimii jo käytössä olevien mittarien mittausdatalla.
  4. Asukkaat voivat edelleen kilpailuttaa omat sähkösopimuksensa.
  5. Hyvityslaskentamallilla muodostuvaan taloyhtiön sisäiseen energiayhteisöön liittyminen ja siitä poistuminen on helppoa, koska se edellyttää muutoksia vain hyvityslaskentasopimukseen ja -ohjelmiston asetuksiin.

Kuva 2. Hyvityslaskentamallin kuvaus.

FinSolar-taloyhtiöpiloteissa aurinkosähköä hyödynnetään ensisijaisesti kiinteistön kulutukseen ja ylijäämä jaetaan asukkaille nykyisen tasejakson mukaan tunneittain IT-ohjelmistolla älykkäiden mittareiden mittausdatan perusteella. Hyvityslaskenta osoittaa, kulutetaanko tuotettu energia kiinteistöverkon sisällä vai siirtyykö energiaa myös jakeluverkkoon.

Kuva 3. Hyvityslaskentamallia pilotoidaan Helsingissä ja Oulussa kolmessa taloyhtiössä. Pilottien kokemusten perusteella malli toimii teknisesti ja sopii asunto-osakeyhtiöiden päätöksentekoon.

Vaihtoehtoinen, nykyisen sähkömarkkinalain hyväksymänä kiinteistön sisäisenä sähköverkkona toimiminen edellyttää taloyhtiössä jakeluverkkoyhtiön mittareiden vaihtamista taloyhtiön omiin sähkömittareihin. Niistä käsin asukkaat eivät voi enää kilpailuttaa omia sähkösopimuksiaan.  Tämän johdosta takamittarointi (11) edellyttää yhtiökokoukselta harvoin saavutettavissa olevaa yksimielistä päätöstä. Vaikka takamittarointi olisi määritelty yhtiöjärjestykseen, siitä huolimatta taloyhtiön mittari pitää vaihtaa jakeluverkkoyhtiön mittariin mikäli osakas haluaa myöhemmin kilpailuttaa oman sähkösopimuksensa. Näin ollen FinSolar-hankkeen johtopäätös on, ettei takamittarointimalli ole yleisesti taloyhtiöille toimiva aurinkosähkön tuotantomalli.

Taloyhtiön asukkaiden muodostamien energiayhteisöjen esteenä  on lainsäädäntö

Nykyinen lainsäädäntö ei mahdollista pientuotannon jakamista taloyhtiön osakkaiden kesken oman kiinteistöverkon sisällä jakeluverkkoyhtiön omistamilla sähkömittareilla. (12) FinSolar-hankkeessa toteutettujen haastattelujen mukaan mikään lakipykälä sähkömarkkinalaissa tai asetuksissa ei suoranaisesti estä virtuaalimittarointi- eli hyvityslakentamallia, vaan este on kiinteistöverkoissa pientuotannon jakamisen sallivan lakipykälän puute.

Ratkaisu: mahdollistetaan pientuotannon laskennallinen jakaminen kiinteistöverkkojen sisällä lakimuutoksella

Tulevaisuuden sähkömarkkinat perustuvat puhtaisiin ja älykkäisiin teknologioihin, kuluttaja- ja käyttäjälähtöisyyteen sekä digitalisaatioon ja energian internet-ratkaisuihin. Sääntelyn ja hinnoittelun tulisi kannustaa kuluttajia kysyntäjoustoon, uusiutuvan energian tuotantoon sekä energian varastointiin. (13)

EU:n sähkömarkkinadirektiivin uudistusehdotuksessa todetaan, että paikalliset energiayhteisöt voivat olla tehokas tapa hallinnoida energiaa yhteisötasolla niin, että sähköä tuotetaan omaan kulutukseen sähkönä, lämpönä tai jäähdytyksenä verkkoon liitynnällä tai ilman. Jäsenmailta edellytetään energiayhteisöjen mahdollistavan lainsäädäntökehikon asettamista. (14)

EU:n lainsäädännön myötä energiayhteisöjä koskevaa kansallista lainsäädäntöä on kehitettävä. Siinä yhteydessä tulisi varmistaa, että suomalaiset taloyhtiöiden asukkaat voivat toimia pientuottajina yhteisvoimalasta omistamiensa osuuksien kautta. Lainsäädännön tulisi sallia aurinkosähkön ja muun pientuotannon laskennallinen jakaminen kiinteistöverkon sisällä osakkaiden omaan käyttöön sähkökaupan tasejaksoittain. Tasejakson pituus on nykyisin tunti ja jatkossa vartti. Mittausasetuksen muutoksella voidaan sallia, että pientuottajien laskutus ja taseselvitys voi perustua myös laskennalliseen tietoon. Tämä mahdollistaisi kiinteistöverkkojen sisäisten energiayhteisöjen muodostamisen nykyaikaisesti älykkäiden sähkömittareiden mittaustiedon ja tietokoneohjelmiston avulla.

Yksinkertaisin tapa toteuttaa kiinteistöverkon sisäisten energiayhteisöjen hyvityslaskenta, sekä yksittäisten pientuottajien tuntinetotus, olisi toteuttaa laskennat keskitetysti Fingridin datahubissa. (Vaihtoehtoisesti laskenta voidaan tehdä jakeluverkkoyhtiöiden tietojärjestelmissä.) Netotuksen ja hyvityslaskennan jälkeen datahub toimittaa laskennalliset mittaustiedot asiakkaalle, taseselvitykseen sekä markkinatoimijoille. Oleellista on, että tasehallinnassa ja laskutuksessa on vain yksi mittaustieto asiakkaalta.

Lisäksi tulee varmistaa, laskennallisen tiedon käyttö on sallittua mittauslaitedirektiivin näyttövaatimusten näkökulmasta. Vaatimus kiinteästä mittarin näytöstä tulisi poistaa, tai tulkintaa muuttaa, koska mittaustietojen luotettavuudesta ja kuluttajasuojasta voidaan varmistua muilla keinoin. (15)

Lisätty 5.1.2021: Kirjoituksessa mainitut energiayhteisöt ja hyvityslaskelmamallin mahdollistava lakimuutos astui voimaan 1.1.2021. Lisätietoja muutoksesta löydät täältä

Tekijät

FinSolar-projektijohtaja ja tutkija Karoliina Auvinen, Aalto-yliopiston kauppakorkeakoulu, karoliina.auvinen@aalto.fi, puh. +358 50 462 4727

Professori Samuli Honkapuro, Lappeenrannan teknillinen yliopisto, samuli.honkapuro@lut.fi, puh. +358 400 307 728

Politiikkasuositus on toteutettu osana STEK:n päärahoittamaa FinSolar -hanketta www.finsolar.net, Strategisen tutkimuksen neuvoston Smart Energy Transition -hanketta www.smartenergytransition.fi sekä CO2mmunity http://co2mmunity.eu/  ja DOMINOES dominoesproject.eu EU-hankkeita.

Politiikkasuositus ladattavana PDF-muodossa

 

Lähteet

1. PRH. 2018. Yritysten lukumäärä Suomessa. [Viitattu 31.5.2018]. Saatavissa: https://www.prh.fi/fi/kaupparekisteri/yritystenlkm/lkm.html

2. Suomen virallinen tilasto (SVT): Rakennukset ja kesämökit [verkkojulkaisu]. ISSN=1798-677X. 2017, Liitetaulukko 1. Rakennukset, asunnot ja henkilöt talotyypin ja kerrosluvun mukaan 31.12.2017. Tilastokeskus [viitattu: 31.5.2018]. Saatavissa: http://www.stat.fi/til/rakke/2017/rakke_2017_2018-05-25_tau_001_fi.html

3. Energiavirasto. 2018. Saatavissa: https://www.energiavirasto.fi/media/-/asset_publisher/ooKNxg1qkv7p/content/sahkonpientuotanto-kovassa-kasvussa-aurinkosahkon-tuotantokapasiteetti-2-5-kertaistui-vuodessa

4. https://www.pv-magazine.com/2018/03/28/swedens-operational-pv-capacity-tops-231-mw/

5. https://cleantechnica.com/2018/02/05/solar-may-storm-past-wind-sooner-expected-even-denmark/

6. Aalto-yliopisto. 2018. Aurinkosähkökysely asunto-osakeyhtiöiden osakkaille 2018: Tulokset & yhteenveto. Saatavissa: https://docs.google.com/presentation/d/14B9wnc5IAfWA45V1SJdWvTo8v6WyYUqCOcurIWQC6XU/edit?usp=sharing

7. Sähkömarkkinalaki 588/2013, 10.luku, Saatavissa: http://www.finlex.fi/fi/laki/ajantasa/2013/20130588

8. Atula, R. & Hildén, M. 2017. Pienimuotoisen aurinkosähkön tuotannon ja myynnin sääntely sekä sähkömarkkinat. Ympäristöjuridiikka 4/2017 s. 54–69

9. Asukkaiden aurinkosähkön ja sähköautojen latauksen toteutusmallit taloyhtiöissä (kalvoesitys). Saatavissa: https://docs.google.com/presentation/d/1_c2Td0WeSBNAY-oq9xmwI2Br-uLtrLBQSFuxADH-8XE/edit?usp=sharing

10. FinSolar. 2017. Aurinkosähkön hinnat ja kannattavuus. Saatavissa: https://finsolar.net/aurinkoenergian-hankintaohjeita/aurinkosahkon-hinnat-ja-kannattavuus/

11. Lisätietoja aurinkosähkön takamittarointimallista: https://finsolar.net/taloyhtiot/aurinkosahkon-takamittarointimalli/

12. Auvinen et. al. 2018. Keskustelupaperi: Ratkaisuehdotuksia sähkön mittauksen haasteisiin kuluttajien ja energiayhteisöjen puhtaan pientuotannon edistämiseksi. Saatavissa: http://smartenergytransition.fi/fi/keskustelupaperi-sahkoenergian-mittaus-kuluttajien-energiapalvelujen-ja-puhtaan-energian-mahdollistajana/

13. Ahola et. al. 2017. Kohti sähkömarkkinamallia 2.0. Saatavissa: http://smartenergytransition.fi/fi/keskustelupaperi-kohti-sahkomarkkinamallia-2-0/

14. EUROPEAN COMMISSION Brussels, 23.2.2017 COM(2016) 864 final/2 2016/0380 (COD) CORRIGENDUM. This document corrects document COM (2016) 864 final of 30.11.2016. Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on common rules for the internal market in electricity (recast). Pages 4-6. Available: https://ec.europa.eu/energy/sites/ener/files/documents/1_en_act_part1_v7_864.pdf.

15. Auvinen et. al. 2018. Keskustelupaperi: Ratkaisuehdotuksia sähkön mittauksen haasteisiin kuluttajien ja energiayhteisöjen puhtaan pientuotannon edistämiseksi. Saatavissa: http://smartenergytransition.fi/fi/keskustelupaperi-sahkoenergian-mittaus-kuluttajien-energiapalvelujen-ja-puhtaan-energian-mahdollistajana/

Co2mmunity promotes solar community energy projects

Co-producing and co-financing renewable community energy projects

Co2mmunity in a nutshell

Aim: Support citizens to co-finance, co-develop, and co-operate sustainable energy projects.
Budget€ 3.15 million, thereof € 2.45 million from the European Union (European Regional Development Fund)
Project period: October 2017 to September 2020
Lead PartnerKiel University, Working Group Economic Geography

Aalto University School of Business is part of the Co2mmunity consortium, that has in total 14 partners from 8 different countries in the Baltic Sea Region. In each partner region, Co2mmunity project will promote community energy initiatives and manage renewable energy cooperative partnership RENCOPs. 

Aalto team’s role is to coordinate the collection of community energy case studies across the partner countries and develop a synthesis report on the current community energy situation in the region. It will showcase success factors of community energy projects that are transferable across contexts. Aalto University will also participate in writing white papers for public stakeholders.

More information: 
Project Manager, researcher, M.Sc. (Eng.) Karoliina Auvinen, karoliina.auvinen@aalto.fi, +358 50 462 4727
Postdoctoral Researcher, PhD Salvatore Ruggiero, salvatore.ruggiero@aalto.fi, +358 50 435 9025

About Energize Co2mmunity

 

Oikeustieteen gradu selvitti: Onko sähkön pientuotannon nettolaskutus mahdollista vai ei?

Sähkön pientuotannon kannattavuuden parantamiseksi on esitetty erilaisia lainsäädännöllisiä keinoja. Yhdeksi keinoksi on esitetty nettolaskutusta, jolla tarkoitetaan sähkön käyttökohteeseen sähköverkosta otetun sähkön eri hintakomponenttien eli sähköenergian hinnan, siirtomaksujen ja verojen kompensoimista sähkölaskussa toisena ajankohtana verkkoon syötetyllä sähköllä. Nettolaskutuksella tarkoitetaan pääasiassa sähkökaupan aikayksikköä pitempiin aikajaksoihin kohdistuvaa pientuotannon netotusta. Spot-markkinan nykyinen aikayksikkö on tunti ja jatkossa vartti.

Gradu tutkii sähkön eri hintakomponenttien nettolaskutuksen juridista toteuttamiskelpoisuutta nykylainsäädännön kannalta. Tutkimus on oikeusdogmaattinen eli tutkimuksen ja tulkinnan kohteena on säädetty oikeus. Pääasiallisena tutkimus- ja taustamateriaalina käytetään Suomessa ja Ruotsissa tehtyjä aikaisempia selvityksiä nettolaskutuksesta, sekä niistä annettuja eri tahojen antamia lausuntoja. Tutkimuksessa tehdään myös de lege ferenda -kannanottoja eli otetaan kantaa siihen kuinka lainsäädäntöä tulisi muuttaa, jotta nettolaskutus voitaisiin toteuttaa tulevaisuudessa.

Tutkimuksessa päädytään johtopäätökseen, että joltain osin nettolaskutus on mahdollista toteuttaa nykyisen lainsäädännön puitteissa. Kaikkien komponenttien nettolaskutus ei ole mahdollista ja keskeiseksi esteeksi muodostuu harmonisoitu EU-lainsäädäntö.

Eritellysti eri komponenttien osalta tutkimuksessa päädytään seuraaviin johtopäätöksiin:

Sähköenergian osalta laki ei estä, että sähkön hinnasta sähköenergian komponentti hyvitetään sähkön pientuottajalle, kun pientuottaja syöttää sähköverkkoon tuottamaansa sähköä.

Sähköveron nettolaskutus vaikuttaa vaikealta toteuttaa, sillä energiatuotteiden valmisteverotus on pitkälti harmonisoitu Euroopan unionissa. Tämä asettaa reunaehdot, jonka puitteissa jäsenvaltion tulee asettaa sähköverotuksensa. Oikeastaan kaikissa Suomessa tehdyissä selvityksissä on tultu poikkeuksetta siihen lopputulokseen, ettei sähköveron nettolaskutus ole mahdollista EU-oikeuden takia. Missään ei ole kuitenkaan pohdittu mahdollisuutta hakea kansallista poikkeusta, jonka energiaverodirektiivin 19 artiklan ensimmäinen kohta mahdollistaa. Tällaisen vaihtoehdon mahdollisuutta ei tiettävästi ole Suomessa edes tutkittu, kuten ei myöskään energiaverodirektiivin 15 artiklan käyttöä. Ennen kuin tehdään johtopäätös sähköveron nettolaskutuksen mahdottomuudesta, tulisi siis varmistua 15 ja 19 artiklan käyttökelvottomuudesta. Sähköveron nettolaskutus vaikuttaa potentiaalisesti siis mahdolliselta.

Arvonlisäveron nettolaskutus ei ole mahdollista, koska laki yksiselitteisesti kieltää hintojen ja verojen netottamisen myytäessä ja vaihtokauppatilanteissa, mistä nettolaskutuksessa on asiallisesti juuri kysymys.

Siirtomaksun nettolaskutus on mahdollista ja voidaan toteuttaa. Se koskisi tällöin siirtomaksun muuttuvaa komponenttia ja voisi mahdollistaa netottamisen kokonaisuudessaan, jolloin pientuottajan maksettavaksi tulisi vain ostetun ja myydyn sähkön erotuksena saatavan energiamäärän siirtomaksu.

Gradu on luettavissa osoitteessa: http://urn.fi/URN:NBN:fi:hulib-201709295427

Kirjoittaja:

Aki Aapio, OTM
Kirjoittaja on valmistunut oikeustieteen maisteriksi Helsingin yliopistosta lokakuussa 2017
aki.aapio@gmail.com

Blogi julkaistu: 14.12.2017

Kestääkö katto aurinkovoimalan? – katso tarkistuslista

Aurinkovoimaloiden kestävä rakentaminen – hankinnassa huomioitavia asioita

Aurinkovoimaloiden lukumäärä kasvaa vuosi vuodelta ja asennuksiin liittyviä tietopaketteja löytyy useita yksinkertaisellakin google-haulla. Ala on lähtenyt liikkeelle luonnollisesti sähkötekniikka edellä, jonka vuoksi useimmat oppaat eivät juurikaan käsittele aurinkovoimaloihin liittyvää rakennustekniikkaa. Oppaista löytyy ennemminkin avut paneeliteknisiin asioihin kuten sijoituksiin, suuntauksiin ja asennuskulmaan sekä sähköteknisiin osiin ja niiden liityntöihin.

Näistä lähtökohdista syntyi tarve rakennustekniselle diplomityölle. Teos kokoaa yhteen aurinkovoimaloiden rakennustekniset ominaisuudet sekä avaa laajemmin rakentamisen yhteydessä esiintyviä lauseita, kuten ”vedeneristyksestä on huolehdittava” ja ”katon kantavuus on varmistettava”.

Käyttöikä

Aurinkovoimaloiden rakennustekniikassa on hyvä lähteä liikkeelle rakennusalustan, useimmiten katon, käyttöiän tarkastelusta. Onko huoltotoimenpiteet suoritettu ja katon käyttöikä säilynyt odotuksien mukaisena tai onko tulevaisuudessa tiedossa isompia remontteja? Eli vastaako katon jäljellä oleva käyttöikä aurinkovoimalan oletettua 25 vuotta? Yläpohjarakenteen käyttöiäksi lasketaan useimmiten 25-50 vuotta ja vesikatteelle jopa 50 vuotta rakenteesta riippuen. Katteen todellinen kunto on hyvä kuitenkin tarkastaa kohteen katselmuksella.

Kantavuus

Asuinrakennusten kattojen kantavuus on useimmiten riittävä, mutta pystyttävä silti todistamaan. Kokemukset ovat osoittaneet, että erityisesti pientalojen kattoina käytettään jykevämpiä rakenteita, kuin mitoituksen perusteella olisi tarpeen. Lisäksi asuinrakennusten katoille sijoitettavat paneelimäärät ovat monesti vain 1/3 kattopinta-alasta. Tilanne on toinen puolestaan tasakattoisilla toimitilarakennuksilla, joiden pitkien jännevälien ja lähes koko kattopinta-alalle kertyvän lisäkuorman (aurinkovoimala + kinostuva lumi) vuoksi kantavuus tulee tarkistaa. Erityistä huomiota tulee kiinnittää myös ennen 70-lukua suunniteltuihin toimitilarakennuksiin, koska siihen aikaan muun muassa lumikuormat on laskettu nykyisiä mitoitusvaatimuksia puolet pienemmillä arvoilla. Tästä johtuen kantavuuden tarkistavat laskelmat ovat välillä osoittaneet, että rakennuksen katto tulisi vahvistaa, ennen kuin sen päälle olisi turvallista asentaa aurinkovoimalaa.

Katon kantavuus on tehokkainta varmistaa rakennuksen rakennesuunnittelijalta, mikäli se on vain mahdollista. Muutoin ulkopuolinen rakennesuunnittelija tarkistaa aurinkovoimalan tuoman lisäkuorman kantavuuden esimerkiksi mitoittamalla rakenteen uudelleen tarkoilla arvoilla. Yksi tapa voi olla myös tarkistaa katon alkuperäisessä mitoituksessa huomioidut varaukset (kg/m2) ilmanvaihtokoneille tai muille kattoon tulleille ripustuksille. Mikäli näitä niin sanottuja kattoripustusten varauksia ei ole käytössä kuin murto-osa suunnitellusta, voi sieltä löytyä aurinkovoimalan tuoman lisäkuorman kantavuus.

Vedeneristys ja katon pehmeys

Vastuullisimmat aurinkovoimaloiden toimittajat osoittavat tarjouksissaan automaattisesti vedeneristystavan, mikäli asennus vaatii läpivientejä kattorakenteisiin. Yleisimmin käytetään kumitiivisteitä läpiviennin ympärillä sekä bitumikerrosten lisäämistä. Bitumikerroksien ja muovimattojen lisääminen on suositeltavaa myös telineprofiilien ja kaapelihyllyjen jalustojen alle, joiden terävät reunat voivat vahingoittaa erityisesti bitumikattoa.

Lisäkerrokset parantavat katon kestävyyttä myös painumien kohdalla, joihin kertyvä vesi ja roskat lisäävät mikrobikannan kasvua, joka hiljalleen vahingoittaa bitumikatetta. Erityisen pehmeillä katoilla myös telineprofiilin leveyttä voidaan tapauskohtaisesti suurentaa, jotta aurinkosähköjärjestelmän paino jakautuu suuremmalle alalle ja painumat pienenevät.

Ihanteellisinta olisi sijoittaa telineprofiilit vesien juoksusuuntien eli kattokaatojen suuntaisesti. Mikäli se ei kuitenkaan ole mahdollista, tulisi kattopinnalla makaavat telineprofiilit katkaista muutaman metrin välein. Osien väliin tulee jättää vähintään muutaman senttimetrin levyinen rako, jotta vesi ja roskat pääsevät kulkemaan kattokaivoihin, eivätkä kerry telineprofiilien vierustoille. Myöskään kattokaivoja ei saa peittää järjestelmän osille, jotta niiden toimivuus ei esty ja niiden huoltotoimenpiteet on mahdollista suorittaa.

Työmaatoiminta

Suuret kattopinnat ovat houkuttelevia varastointialustoja, mutta kattoa ei saisi käyttää varsinaisena työmaa-alustana. Ylimääräistä kulkua katolla tulisi välttää eikä katolle tule säilöä työvälineitä ja järjestelmän osia. Nämä voivat aiheuttaa riskin katon kantavuudelle tai vahingoittaa kattopintaa putoillessaan tai siirtyessään tuulen vaikutuksesta. Tuulen vuoksi myös painoperusteisessa asennuksessa on painojen paikalla pysyvyys varmistettava, jotta painot eivät putoillessaan/siirtyessään riko katetta.

Paloturvallisuus

Tuuletusvälillä on merkitystä paneelien hyötysuhteeseen, mutta myös katon kestävyyteen. Tuuletusväli mahdollistaa lumen ja roskien kulkeutumisen pois paneelien alta. Roskien kertyminen paneelien alle voi Suomessakin aiheuttaa tulipalovaaran. Lisäksi paloturvallisuussyistä tulee rakennuksen reunoille jättää vähintään metrin kulkutila huoltotoimille sekä palokunnalle. Samaa metrin sääntöä on tarpeen käyttää myös savunpoistoluukkujen läheisyydessä, jottei niiden toiminta esty. Aurinkovoimalasta tulee lisäksi tiedottaa palokuntaa, ja järjestelmän osat on merkittävä selkeästi tarroin. Palokunnalle tulee ilmoittaa muun muassa kulkuväylät sekä aurinkovoimalan irtikytkennän sijainti.

Materiaalit

Järjestelmän teline- ja kiinnitysosien tulisi olla samaa materiaalia, jotta galvaaniselta korroosiolta vältyttäisiin. Mikäli osissa on käytetty eri metalleja, ne alkavat jalousasteisiin perustuen syövyttämään toisiaan, jolloin osien käyttöikä luonnollisesti laskee.

Yhteenveto

Kuten tekstistä huomataan, selkeitä yleistyksiä on hyvin haastava tehdä. Kattorakenteet ovat eri kohteissa erilaiset, kuten myös aurinkosähköjärjestelmät, joten kokonaisuus on jokaisessa kohteessa erilainen. Laitetoimittajat ovat kuitenkin alansa ammattilaisia ja osaavat suositella optimaalisimmat kokonaisuudet jokaiselle kohteelle.

Alle on vielä koottu tarkistuslistaksi tärkeimmät pointit tästä tekstistä. Tarkempi listaus on diplomityön liitteenä 1. Nämä asiat huomioimalla aurinkovoimalan hankinnassa, voi huolettomammin nauttia säällä kuin säällä investoinnistaan uusiutuvaan energiaan!

Tarkistuslista:

  • Käyttöiät
  • Kantavuus, erityisesti toimitilarakennukset
  • Vedeneristys
  • Telineprofiilien suunta suhteessa kattokaatoihin
  • Katon pehmeys
  • Tuuletusväli
  • Kattokaivojen ja savunpoistoluukkujen toiminta ei esty
  • Muuta: metallien jalousasteet, painojen paikallapysyvyys, kulkuväylät

Kiitokset mielenkiinnosta ja vastuullisesta asenteesta kohti aurinkovoimaloiden kestävää rakentamista!

Kirjoittaja:

Diplomi-insinööri Krista Jaatinen

Päivitetty: 26.4.2017

Lisätietoja:

Jaatinen Krista. 2016. Diplomityö: Aurinkovoimaloiden rakentamisen tehostaminen. Tampereen teknillinen yliopisto. Saatavissa: https://dspace.cc.tut.fi/dpub/bitstream/handle/123456789/24192/Jaatinen.pdf?sequence=3

Vuores-talon ja KOY Aurinkopajan aurinkosähköjärjestelmien kannattavuus

Tampereen Vuores-talon ja Porin kiinteistöosakeyhtiö Aurinkopajan aurinkosähköinvestointien tekniset ja taloudelliset tiedot

  Vuores-talo, Tampere KOy Aurinkopaja, Pori
Tyyppi ja teho: Aurinkosähkövoimala, 45 kWp Aurinkosähkövoimala, 49,5 kWp
Hankintakustannus 68 500 € 80 000 €
Tilaaja, toteuttaja ja asennusvuosi: Tilaaja Tampereen kaupunki ja toteuttaja Areva-solar Oy v. 2014 Kiinteistöosakeyhtiö rakennutti voimalan itse v. 2014
Paneelien alkuperä: tuonti ulkomailta Valoe Oy, Mikkeli
Investoinnin kotimaisuusaste: 56% 62%
Arvioitu tuotanto vuodessa (vähenemä 0,5%/v): 833 kWh/kWp 900 kWh/kWp
Järjestelmän elinikä: 30 vuotta 30 vuotta
Tuet: TEM:n 30% energiatuki TEM:n 30% energiatuki
Rahoitus: Leasingrahoitus, rakennusleasing-sopimus Oma rahoitus, ei lainaa
Investoinnin sisäinen korkokanta (IRR) 25 vuoden laskenta-ajalla: 6% 6,2%
Investoinnin nettonykyarvo (NPV) 25 vuoden laskenta-ajalla: 24 790 euroa 2% laskentakorolla 41 970 euroa 1% laskentakorolla
Takaisinmaksuaika: 15 vuotta 13 vuotta
Aurinkosähkön tuotantohinta 30 vuoden ajalle (omakustannushinta): 5,1 snt/kWh 5 snt/kWh
Ostosähkön arvioitu keskiarvohinta 30 vuoden aikana: 12 snt/kWh 12 snt/kWh
Takuut: Paneeleilla 25 vuoden 80 % nimellistuottotakuu Paneeleilla 25 vuoden 80 % nimellistuottotakuu

Laskelmat ja oletukset:

Lataamalla excel-taulukot voit tehdä itse kannattavuuslaskelmille herkkyystarkasteluja  investointien lähtö- ja oletusarvoja vaihtelemalla.

Lähteet ja lisätietoja:

Koonnut: Karoliina Auvinen, 11/2015